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Motivation: Understanding dynamic, patient-level transcriptomic response to therapy is an important
step forward for precision medicine. However, conventional transcriptome analysis aims to discover
cohort-level change, lacking the capacity to unveil patient-specific response to therapy. To address this
gap, we previously developed two N-of-1-pathways methods, Wilcoxon and Mahalanobis distance, to
detect unidirectionally responsive transcripts within a pathway using a pair of samples from a single sub-
ject. Yet, these methods cannot recognize bidirectionally (up and down) responsive pathways. Further,
our previous approaches have not been assessed in presence of background noise and are not designed
to identify differentially expressed mRNAs between two samples of a patient taken in different contexts
(e.g. cancer vs non cancer), which we termed responsive transcripts (RTs).
Methods: We propose a new N-of-1-pathwaysmethod, k-Means Enrichment (kMEn), that detects bidirec-
tionally responsive pathways, despite background noise, using a pair of transcriptomes from a single
patient. kMEn identifies transcripts responsive to the stimulus through k-means clustering and then tests
for an over-representation of the responsive genes within each pathway. The pathways identified by
kMEn are mechanistically interpretable pathways significantly responding to a stimulus.
Results: In �9000 simulations varying six parameters, superior performance of kMEn over previous
single-subject methods is evident by: (i) improved precision-recall at various levels of bidirectional
response and (ii) lower rates of false positives (1-specificity) when more than 10% of genes in the genome
are differentially expressed (background noise). In a clinical proof-of-concept, personal treatment-
specific pathways identified by kMEn correlate with therapeutic response (p-value < 0.01).
Conclusion: Through improved single-subject transcriptome dynamics of bidirectionally-regulated
signals, kMEn provides a novel approach to identify mechanism-level biomarkers.

� 2016 Published by Elsevier Inc.
1. Introduction tools available for transcriptome analysis have lagged, relying on
Precision medicine requires a deep understanding of disease
mechanisms at the level of the individual patient. However, the
cohort-based statistics and averaged dynamic responses across
multiple individuals. In addition, transcriptional signatures at the
level of specific differentially expressed genes have often been dif-
ficult to reproduce or interpret [2]. Gene set (or pathway) oriented
methods including gene set enrichment analysis (GSEA) and differ-
entially expressed genes (DEG) followed by gene set enrichment
(DEG + Enrichment) [3–5] have become popular ways to provide
more robust and biologically interpretable disease mechanisms.
However, these methods still rely on between-groups cohort-
based calculations to provide an initial input list or ranking of
genes prior to enrichment analyses. Nonetheless, defining gene
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sets based on Gene Ontology (GO; [6]) provides a major advantage
for mechanistic interpretation, while also reducing the number of
studied features (pathways vs. gene level). To move from the ‘aver-
age’ responsive pathway in a cohort to patient-specific signals
requires a new approach.

Several studies have begun to develop pathway-based analyses
that apply to expression data derived from a single-patient sample.
In the beginning of genome-wide expression analyses (early
2000s), we and others have tried to identify differentially
expressed genes using simple gene expression fold change (FC)
between two paired samples with an arbitrary cutoff. However,
due to highly inaccurate measurements of expression platforms,
particularly in low expression quantities, FC was found exceed-
ingly uninformative in subsequent biological validation. Abandon-
ing simplistic FC, Bottomly et al. compared a single transcriptome
to a cohort reference transcriptome [7]. We conceived Functional
Analysis of Individualized Microarray Expression (FAIME; Table 1)
[8] to score pathways within a single sample, moving away from
cohort-based approaches. Further, a new Gene Set Enrichment
Analysis software was also designed to score pathways within a
single sample (ssGSEA; Table 1), which is provided in the main
GSEA portal (http://software.broadinstitute.org/gsea). ssGSEA
remains a non-published, non-reviewee portal software, without
formal evaluation accounts for its performance. However, these
two ‘‘static expression” methods (FAIME, ssGSEA) were designed
to make inferences from only one transcriptome and report expres-
sion of a pathway as compared to the background expression of the
same sample (Table 1). In addition, the normal expression levels of
some pathways are expected to be lower (or higher) than the aver-
age expression in a context-specific manner. These expression
analyses of a static transcriptome cannot detect dynamic transcrip-
tome changes such as those arising from treatment as measured
from a change from baseline (control). While the DNA genome
can be contrasted with a reference genome and yield meaningful
interpretations for a single subject in the context of precision med-
icine (e.g. missense mutation associated to a Mendelian Disease),
the transcriptome integrates the dynamic expression of the gen-
ome and epigenome over time and space. Therefore, for increased
utility in precision medicine, new analytic frameworks providing
meaningful interpretation of the dynamic changes of the transcrip-
tome in the context of response to therapy or disease progression
are required.

We conceived the N-of-1-pathways framework to analyze a pair
of samples from a single patient [1,9–12] providing a personal
transcriptome profile describing pathway-level responses. Under
this framework, the response of a pathway is an accumulation of
Table 1
Methods comparison to the application of single-subject pathway analysis.

Bidirectional
response
detection

Ba
no
ad

Single-subject pathway analysis N-of-1-pathways kMEn Yes Ye
N-of-1-pathways MD No No
N-of-1-pathways Wilcoxon No No
ssGSEAa No Ye
FC + ssGSEAa No Ye
FAIME No Ye

Cohort-based Pathway analyses DEG + Enrichment N/A N/
GSEA N/A N/

N/A indicates not applicable; cohort-based methods, such as DEG + Enrichment and GSEA
applicable. ++ indicates moderate accuracy by the measure of precision-recall;+ indicates
measure of precision recall. Note: empty cells imply the lack of the corresponding featu

a FC + ssGSEA is a new application of ssGSEA using the fold change expression of a gen
intended by ssGSEA authors). We previously conceived FC + ssGSEA, and we have shown
on the GSEA portal is not applicable to paired samples (of note, ssGSEA was never form

b Background noise adjustment is achieved by genome-wide competitive modeling [1
the gene level evidence, thereby mitigating the noise and artifacts
inherent to the lack of replicates. Importantly, inferences are made
based on the information from a single patient and thus are truly
personalized. Current cohort-based methods (e.g. DEG + Enrich-
ment and GSEA) require multiple replicates and therefore are not
applicable in single-subject analysis when no intra-patient repli-
cate is available. Existing N-of-1-pathways approaches can only
detect concordant regulation of transcript expression between
the two samples: the majority being either up- or downregulated
within a pathway (Table 1).

This study introduces a novel method within the N-of-1-path-

ways framework using k-Means clustering [13] of transcript fold

change (FC) followed by gene set Enrichment (kMEn) analysis.
We demonstrate that kMEn enables bidirectional response detec-
tion as well as unidirectional pathway responses while remaining
robust against overall transcriptome variability (background noise)
(Table 1). kMEn outperforms the other N-of-1-pathways methods
in two simulation studies. Then, using a clinical case study on pub-
licly available data, we applied kMEn to identify patient-level tran-
scriptional pathway response to antiretroviral therapy in 20 HIV-
infected individuals.
2. Methods

Fig. 1 and Table 2 present an overview of the kMEn approach
and the list of acronyms used in this study, respectively.

2.1. Datasets

Transcriptome datasets. Simulation studies were based on RNA-
sequencing data from seven biological replicates of the MCF7
breast cancer cell line (Gene Expression Omnibus, GSE51403;
[15]), which allowed us to estimate the expression level and vari-
ation of each gene. These seven biological replicates were
sequenced by Illumina HiSeq 2000. The clinical case study was per-
formed on microarray data from peripheral blood mononuclear
cells (PBMCs) isolated from 20 HIV-infected patients before and
48-weeks after antiretroviral treatments (Gene Expression Omni-
bus, GSE44228) [16]. 12 patients were treated with non-
nucleoside reverse transcriptase inhibitor (NNRTI) and 8 with pro-
tease inhibitor (PI). An additional 12 patients treated by both med-
ications were not included. This dataset also included the
peripheral CD4+ T-cell counts for each patient and timepoint.

Knowledge-base datasets. GO was used to provide functional
annotations of genes into gene sets (pathways). Biological process
ckground
ise
justmentb

Discovery
of DEGs

Transcriptome
dynamics from
a pair of samples

Precision
recall

Original
publication

s Yes Yes +++ Current Manuscript
No Yes ++ Yes
No Yes ++ Yes

s No No N/A No
s No Yes + No
s No No N/A Yes

A N/A N/A N/A N/A
A N/A N/A N/A N/A

, cannot be applied to single-subject analysis, and therefore all assessments are not
low accuracy by the measure of precision-recall. +++ indicates high accuracy by the
re.
e across two paired samples, rather than static gene expression on one sample (as

that is has lower accuracy than N-of-1-pathwaysWilcoxon [10]. ssGSEA as described
ally published or evaluated).
4].

http://software.broadinstitute.org/gsea


Single-Subject Analysis

Fig. 1. N-of-1-pathways kMEn overview. The transcript expression measurements of each single-subject paired sample are used to calculate the fold change (FC) between two
samples. The k-means-based clustering of the FC values was then used to partition transcripts into responsive (either up or down) versus nonresponsive. An enrichment test
was subsequently applied on the responsive transcripts within each pathway using Fisher’s Exact Test, controlling for multiple comparisons. The term ‘‘responsive
transcripts” (RTs) refers to the transcripts changing across conditions but derived from single-subject analysis, while ‘‘differentially expressed genes (transcripts)” (DEGs)
pertains to those derived from analysis of a cohort.

Table 2
Acronyms and definitions.

Acronym Description

AUC Area Under the precision-recall Curve
CD4+ FC CD4+ T cell counts (Fold change of)
Cohort Expectation

Standard
Proxy Gold Standard derived from cohort statistics to
evaluate single subject analyses

DEG Differentially Expressed Gene (transcripts)

FC Fold change
FDRBH Controlled False Discovery Rate (FDR) using Benjamini-

Hochberg procedure
FDRBY Controlled FDR using Benjamini-Yekutieli procedure
FET Fisher’s Exact Test
GO Gene Ontology
GO-BP Gene Ontology Biological Processes
HIV Human Immunodeficiency Virus
kMEn N-of-1-pathways kMeans Enrichment
MD N-of-1-pathways Mahalanobis Distance
NNRTI Non-Nucleoside Reverse Transcriptase Inhibitor

NRTs Unresponsive transcripts
OR Odds Ratio
PBMCs Peripheral Blood Mononuclear Cells
PCA Principal Component Analysis
PI Protease Inhibitor

RTs Responsive transcripts (differentially expressed between
two samples of a single subject)

SAM Significant Analysis of Microarrays
Wilcoxon N-of-1-pathways Wilcoxon
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(GO-BP) containing 15 to 500 genes annotations were included to
afford comparison to previous N-of-1-pathways methods. Files
were downloaded in March 2013 using R Bioconductor org.Hs.eg.
dg package [17]. Note, we use GO-BP to define gene sets when test-
ing N-of-1-pathways methods, and the term ‘gene set’ and ‘path-
way’ are used interchangeably.

2.2. N-of-1-pathways kMEn algorithm

kMEn identifies responsive transcripts and prioritizes pathways
as follows:
� Using the absolute value of the log-transformed expression fold
change (|log2(FC)|) between two samples (e.g. paired samples,
before and after treatment, from the same subject), every tran-
script was clustered into two groups (k = 2), ‘biologically
responsive’ and ‘biologically unaltered’, by the nonparametric
clustering algorithm k-Means (Eq. (1)) [13]. The k-Means algo-
rithm minimizes the within-cluster differences while maximiz-
ing the cross-cluster differences via the objective function (Eq.
(1)),

argmin
G

X2

k¼1

X

Xi2Gk

kXi � lkk2 ð1Þ

where argminG finds the partition G that minimizes the objective
function, ||Xi � lk|| is the Euclidean distance, Xi = |log2(FC)i| of tran-
scripti, and lk is the arithmetic mean of |log2(FC)| in transcript clus-
ter Gk. The transcripts cluster with the highest mean is defined as
‘responsive transcripts’ (RTs) and the other cluster as ‘unreponsive
transcripts’ (NRTs).
� Within the ‘responsive’ cluster, transcripts with positively-
signed log2(FC) are annotated as upregulated and similarly tran-
scripts with negative log2(FC) as downregulated (Fig. 1).

� Each gene set is tested for enrichment of responsive transcripts
(using R function fisher.test). Specifically, a Fisher’s Exact Test
(FET) [18] is conducted on a 2 � 2 contingency table of genes
(responsive or unresponsive vs. in the pathway or not). The test
results in a nominal p-value which is corrected for multiple
comparisons via Benjamini-Yekutieli (FDRBY) [19].

2.3. Simulation study: comparing N-of-1-pathways methods in the
presence of bidirectional response and background noise in synthetic
pathways (Figs. 2 and 3)

Two simulation studies – a precision-recall assessment (Simula-
tion 1) and a false positive rate comparison (Simulation 2) - were
designed to evaluate and compare the accuracy of N-of-1-pathways
kMEn to that of two previously published single-subject transcrip-
tome response methods. The Wilcoxon signed-rank test (Wil-
coxon) was designed to determine a difference in central
tendency of transcript expression within a given pathway and suc-
cessfully predicted cancer survival outcomes [10]. The Maha-
lanobis Distance (MD) overcame statistical shortcomings of the
Wilcoxon approach while providing a clinically relevant metric of
pathway response in breast cancer [12]. We could not compare
results to cohort-based transcriptome analyses such as GSEA [4],
as they require calculations from multiple distinct subjects and
were not applicable to the single-subject design of this study.

The Negative Binomial distribution, NB(lg, /g), was used to sim-
ulate the expression counts of each transcript (noted ‘‘g”) [20,21].
The mean (lg) and overdispersion (/g) were estimated from the
seven biological replicates of breast cancer (Methods Section 2.1;



Table 3
Parameters for generating simulated transcriptomes. The terms of ‘gene set’ and ‘pathway’ were used interchangeably referring to biological mechanisms.

Parameter Description Parameter values

path.size Number of transcripts per pathway {5, 10, 15 to 490 by steps of 25, 500}
path.pct.dys % of responsive transcripts in the target pathway {5% to 100% by steps of 5%}
path.FC FC expression of responsive transcripts within a pathway {1.5, 2, 4}
pct.up % of upregulated transcripts among responsive transcripts {0% to 50% by steps of 10%}
pct.bkgrd.noise Background noise of the whole transcriptome {1%, 5%, 10%, 20%}
FC.bkgrd Transcript FC of the background between two simulated sets {1.5, 2, 4}
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[15]). In total, there are 8280 scenarios for the bidirectional
response simulation (Methods Section 2.3.1) and 299 scenarios
pertaining to a background transcript noise (prevalence of respon-
sive genes in the whole transcriptome; Methods Section 2.3.2) sim-
ulation. These scenarios explore distinct settings of parameters
used in the simulation, as each simulated scenario corresponds
to a unique combination of parameters (Table 3).

2.3.1. Simulation study 1: exploring the impact of bidirectional
pathway responses

The first simulation study assesses precision and recall of the
three N-of-1-pathways methods under bidirectionally responsive
pathways. 8280 distinct scenarios resulting from all combinations
of the first four parameters in Table 3 were explored. Explicitly, the
simulation replicates were generated as follows:

Step 1. Estimate parameters lg and /g for the Negative Bino-
mial (NB) distribution of each transcript g, using a breast cancer
cell line dataset via method of moments. Since each of the seven
replicates in the dataset has a library size approximately equal
to 25.5 � 106, library size normalization was not necessary.
Step 2. Generate a pair of transcriptomes by randomly generat-
ing two realizations of NB(lg, /g) for every transcript g. One
transcriptome is defined as baseline and the other as case.
Step 3. Fix a combination of parameters (n = path.size, p = path.
pct.dys, f = path.FC, u = pct.up).
Step 4. Randomly select without replacement n transcripts to
synthetically create a pathway.
Step 5. Randomly select without replacement p percent of the n
transcripts to designate the responsive transcripts within a
pathway when comparing the two transcriptomes. Let
m = p � n be the number of responsive transcripts.
Step 6. Randomly select without replacement u percent of the
m responsive transcripts to designate the transcripts that will
be upregulated (i.e., expression will be multiplied by the factor
f). The remaining (100 - u)% responsive transcripts are desig-
nated as downregulated and, thus, multiplied by 1/f.
Step 7. Replace the expression of responsive transcripts in the
case transcriptome with f � (baseline transcript expression)
and 1/f � (baseline transcript expression), for up- and downreg-
ulated transcripts, respectively.
Step 8. Repeat Step 4 to Step 7 one hundred times to produce
100 simulation replicates.
Step 9. Randomly select without replacement n transcripts to
serve as a negative control pathway. Retain the paired tran-
script expression for these n transcripts from the values gener-
ated in Step 2. Repeat this procedure 100 times to create a
balanced number of positive and negative cases of pathway
response. This produces 200 simulated replicates for this com-
bination of parameters n, p, f, and u.
Step 10. Repeat Step 3 to Step 9 for each of 8280 distinct com-
binations of parameters.

The Area Under the precision-recall Curve (AUC) was calculated
for each of the 8280 distinct combinations of parameters by vary-
ing the p-value cutoffs from 0 to 1 produced by each N-of-1-path-
ways method (R function provided: http://www.lussierlab.org/
publications/kMEn/). For MD, we used sampling with replacement
of the transcripts within a pathway to create a bootstrapped distri-
bution [12]. Using the R ggplot2 package [22], box plots of the com-
bined AUCs were plotted (Fig. 2).

2.3.2. Simulation study 2: studying the false positive rate in the
presence of background noise

299 pathway dysregulation scenarios were used to compare the
false positive rate of the three methods in the presence of back-
ground noise. The three dysregulation parameters path.pct.dys,
path.FC, and pct.up are set to zero and varied by path.size and by
the two noise parameters (pct.bkgrd.noise, FC.bkgrd; Table 3). The
simulated replicates are generated as follows:

Step 1 & 2. Same as the Step 1 and 2 in 2.3.1 respectively.
Step 3. Fix a combination of parameters (n = path.size, b = pct.
bkgrd.noise, f = FC.bkgrd).
Step 4. Randomly select without replacement b percent tran-
scripts to designate responsive transcripts.
Step 5. Replace the expression of the responsive transcripts in
the case transcriptomewith f� (baseline transcript expression).
This guarantees the simulated fold change (background noise)
is exactly f.
Step 6. Randomly select without replacement n transcripts to
synthetically create a pathway.
Step 7. Repeat Step 4 to Step 6 one hundred times to produce
100 simulation replicates.
Step 8. Repeat Step 3 to Step 7 for all 299 distinct combinations
of parameters.

As no pathway-specific fold change is induced, any pathway
found responding by an analytical method is considered a false
positive result. In Fig. 3, the false positive rate (1-specificity) was
calculated using the proportion of the falsely identified pathways
(p-value < 0.05; except MD which uses a conservative decision
rule: proxy p-value = 0% as described by Schissler et al. [12]). Note,
pct.upwas set to equal 0 to avoid confounding effects from bidirec-
tional responses.

2.4. Clinical case study: the individualized response to therapy in HIV-
infected subjects using kMEn

N-of-1-pathways kMEn was applied to analyze the transcrip-
tomic profile change of 20 HIV-infected patients who had been
treated with antiretroviral therapy [16]. Patients were adult men
(19–58 years old) with varied ethnicity who had not been on any
antiretrovirals prior to this study; see reference by Massanella
et al. for full clinical and demographic descriptions. RNA was pre-
pared from PBMCs collected prior to treatment and 48 weeks later
when all exhibited successful viral suppression and some degree of
T-cell recovery. 8 patients were treated with nucleoside reverse
transcriptase inhibitors (NRTIs) in combination with a protease
inhibitor (PI) and 12 patients were treated with NRTIs in combina-

http://www.lussierlab.org/publications/kMEn/
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Fig. 2. N-of-1-pathways kMEn detects both unidirectionally and bidirectionally responsive pathways. Datasets were simulated using 8280 combinations of parameters. (A)
Example of precision-recall curve of the three N-of-1-pathways methods is presented (path.size = 115 transcripts, path.FC = 1.5, path.pct.dys = 10%; Table 3). (B) This panel
illustrates precision-recall curves resulting from 8280 distinct combinations of parameters (Methods Section 2.3) for kMEn; each provides an AUC that can be aggregated into
boxplots in Panel C. (C) Box plots show the uniformly superior performance of kMEn especially when the pathways were simulated with bidirectional responsive transcripts
(colored boxplots).

Fig. 3. kMEn is resistant to background noise. The box plot shows that the false positive rate of kMEn (Methods Section 2.3) is unaffected by the level of background noise, in
contrast to Wilcoxon and MD. 299 different simulation cases were considered for each level of background noise.
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tion with a non-nucleoside reverse transcriptase inhibitor (NNRTI).
RNA samples were hybridized to Illumina HumanWG-6v3 Expres-
sion BeadChip microarrays and transcriptomes were deposited in
Gene Expression Omnibus under accession GSE44228 where we
retrieved them. Gene expression values in the HIV dataset were
log2 transformed and normalized using robust spline normaliza-
tion [23].

N-of-1-pathways kMEn was performed on each pair of PBMC
transcriptomes (pre- vs. post-treatment) to identify responsive
transcripts and GO-BP pathway terms. Pathway p-values were
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converted into ‘Z-scores’ using Eq. (2), where /-1 is the inverse
function of the standard normal cumulative distribution function.
As the gene set p-values provided by kMEn are generated from
Fisher’s Exact Test, Z-scores are determined by the odds ratio
(OR; Eq. (3)) of responding pathway genes after adjusting for sam-
pling error and are clinically relevant.

Zpathway ¼ �U�1 ðp-valueÞ ð2Þ

ORpathway ¼ a� d
b� c

ð3Þ

where a = number of responsive transcripts within the pathway,
b = number of nonresponsive transcripts within the pathway,
c = number of responsive transcripts outside the pathway, and
d = number of nonresponsive transcripts outside the pathway.
2.4.1. Validation of identified responsive pathways from kMEn by
comparison to a conventional cohort-based approach and
visualization in a similarity Venn Diagram (Fig. 4)

A real gold standard is unfeasible as it would require biological
testing of all pathways to infer true positives as well as true nega-
tives. Here, we propose an alternative: cohort-expectation stan-
dard. We generated the cohort expectation standard list of GO
terms for each treatment (pre- vs. post-treatment for NNRTI;
pre- vs. post-treatment for PI) using a conventional cohort-based
DEG + Enrichment approach. We used the Significance Analysis of
Microarrays (SAM) algorithm, adjusted for multiple comparison
Fig. 4. N-of-1-pathways kMEn recovers pathways of the cohort-expectation standard. Inf
the similarity between GO-BP terms found by single-subject analytic kMEn and those fo
expectation standard, see Methods Section 2.4.1). The dashed oval indicates GO-BP terms
there are 36 GO-BP terms found by DEG + Enrichment that were not found by kMEn; how
found by kMEn. (A) All 43 pathways consistently found in every patient by kMEn are
p < 10�10). (B) Over 80% (191/229) of the cohort-expectation standard is recovered by
(similarity-based OR = 4.4, p < 10�10). (C) Over 98% (226/229) of the cohort-expectation
one patient by kMEn (similarity-based OR = 2.9, p < 10�10).
via Benjamini-Hochberg (FDRBH), to identify differentially
expressed transcripts (i.e., DEGs; FDRBH < 5%) between the pre-
treatment and post-treatment samples [24]. Fisher’s Exact Test
[18] was used to determine enrichment of DEGs among GO-BPs
using FDRBY < 5% a [19]. GO terms identified by kMEn were com-
pared to those found by SAM + Enrichment.

Since distinct GO-BP terms may share genes and proximity in
the GO hierarchical classification, GO-BP functional similarity
was also employed to unbiasedly identify relatedness of findings
between the cohort-expectation standard and results [25]. The
GO-BP functional similarity was quantified by information theo-
retic similarity (ITS). ITS was calculated on each distinct pair
among the 3219 GO terms with P15 and 6500 gene annotations,
leading to 5,182,590 pairs of which 31,117 (�6 out of 1000) have
an ITSP 0.7, an a priori cutoff for significance previously described
[25–29].

2.4.2. Correlations between GO-BP scores and CD4+ T cell fold changes
and single GO-BP investigation at transcript level correlations (Fig. 5)

Treatment-specific responsive pathways (i.e., ‘differentially
responsive’) were calculated based on the Z-scores of each GO-BP
(Eq. (2)) generated by kMEn applied to pre-treatment and post-
treatment samples of each patient. The Z-scores of prioritized
pathways were assessed for differences between NNRTI-treated
and PI-treated groups of HIV-infected patients by Welch’s t-test.
Pathways with a nominal p-value <5% were regarded as
treatment-specific pathways. Spearman’s rank correlation [30]
ormation-theoretic-adjusted Venn diagrams were used to visualize the overlap and
und by cross-patient analyses of the 12 NNRTI patients (DEG + Enrichment, cohort-
that are highly similar assessed by ITS, but do not overlap. For example, in Panel A,
ever, these 36 pathways are functionally similar to at least one of the 43 pathways

similar to terms in the cohort-expectation standard (similarity-based [1] OR = 5.5,
kMEn when exploring the pathways commonly responsive in at least 5 patients
standard is recovered when investigating GO-BP terms found responsive in at least



38 Q. Li et al. / Journal of Biomedical Informatics 66 (2017) 32–41
coefficients were calculated between the treatment-specific path-
way Z-scores and the fold changes of CD4+ T cell count (CD4+ FC,
Eq. (4); Sup. Table 1).

½CD4þFC�i ¼
½CD4þ cell count after treatment�i
½CD4þ cell count before treatment�i

ð4Þ

Principal component analysis (PCA) was conducted on the path-
way scores of the treatment-specific responsive GO-BPs (R function
prcomp from stats package) [31], and Spearman’s rank correlation
coefficients were calculated between the FC of CD4+ T cell count
from each patient and the projection of each patient GO-BP scores
on the first principal component (Fig. 5). Finally, the top five posi-
tive and top five negative correlations between GO-BPs and CD4+

FC are reported in Suppl. Table 1, sorted by the pathway contribu-
tion to the principal component (PCA loading).

Next, we identified the three patients with the smallest CD4+ T-
cell fold change in response to NNRTI treatment and the three
patients with the largest CD4+ T-cell fold change. In these diamet-
ric extremes, we further explored the transcripts annotated to
kMEn-identified candidate GO-BP terms to determine if these can
potentially serve as a group of biomolecular markers for predicting
drug response. Transcript responses were compared according to
expression fold change, directionality, and concordance between
samples in each category.

3. Results and discussion

3.1. Simulation studies confirm increased accuracy of N-of-1-
pathways kMEn

Via simulation, we compared the accuracy of the three N-of-1-
pathways methods, kMEn, Wilcoxon, and MD, in the cases of unidi-
rectional response or bidirectional response (Fig. 2). In addition, we
tested the robustness of the three N-of-1-pathways methods
against background noise (Fig. 3).

N-of-1-pathways kMEn outperforms Wilcoxon and MD in the
simulation studies. As hypothesized, kMEnmore accurately detects
pathway response in the presence of bidirectional response of tran-
scripts, and it is also more robust against overall transcriptome
background noise than Wilcoxon or MD (Fig. 3). When the path-
way is unidirectionally dysregulated, kMEn slightly outperforms
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Fig. 5. HIV treatment-specific mechanisms derived from kMEn single-subject
metrics correlate with response to therapy measured by Fold Change of CD4+ T cell
count. Treatment-specific GO-BP mechanisms were discovered independently of
the CD4+ FC biomarker of HIV response to therapy. The first principal component of
kMEn pathway scores correlates with CD4+ T cell recovery (cell count FC) (Methods
Section 2.4.2) for NNRTI treated-patients (above). This study was repeated for both
treatments considered together (Suppl. Fig. S4). FC = cell count fold change (Eq. (4)).
the other two methods (Fig. 2). Also, the false positive rates of
the three methods are comparable when the background noise is
absent (Fig. 3). As MCF7 is reported to carry 69 chromosomes,
which may affect gene expression, a smaller, secondary simulation
study was conducted on kMEn alone. Here, we explored the
robustness of kMEn’s performance on a different generative data-
set using the estimates of gene-specific negative binomial param-
eters obtained from RNA-seq datasets derived from 13 biological
replicates of healthy brain tissue downloaded from GTEx (Suppl.
Fig. S1). The results from this simulation closely mirror the results
from the larger scale study (Figs. 2 and 3).

N-of-1-pathways Wilcoxon and MD methods were designed to
detect the unidirectional pathway expression change, and as a con-
sequence, pathways with both upregulated and downregulated
transcripts may result in no overall expression change. Conversely,
signals of upregulated and downregulated transcripts are additive
in kMEn. In addition, N-of-1-pathways kMEn belongs to the class of
competitive gene set tests [14,32], which defines the pathway
response relative to the genome background while Wilcoxon and
MD are self-contained gene set tests that only analyze transcript
expression within pathways. Together, these explain why back-
ground noise significantly elevates the false positive rates for Wil-
coxon and MD (Fig. 3) relative to kMEn. Resistance to background
noise is important in applications, such as cancer studies, since
cancer genomes can acquire a large amount of passenger muta-
tions, which do not present a cancer cell growth advantage [33].

Investigating further the testing operating characteristics
(empirical false positives and power), a study of GO-BP terms iden-
tified as dysregulated among pairs of the seven MCF7 cell line bio-
logical replicates (used in the simulation study) was conducted
(Suppl. Fig. S2). While both MD and kMEn both detect less false
discoveries than expected at 5% FDRBY (and Wilcoxon for the
majority of pairs), N-of-1-pathways kMEn detects very few false
discoveries overall. Notably, there were no common falsely discov-
ered pathways among independent pairs as identified by kMEn.
This indicates that no GO-BP term is inherently susceptible to
biological-variation-induced dysregulation for these data. We also
investigated AUC (Fig. 2) stability by repeating the simulation 100
times for four representative sets of parameters. The goal is to
study the empirical variation in the AUC metric for kMEn. Two of
the four AUC distributions are centered near 0.999 (as often occurs
for kMEn) and have negligible variability across the 100 replicates
of the experiment (standard error of the AUC statistic <0.002). The
remaining two distributions of AUC are centered at 0.91 and 0.94
with standard errors of 0.0189 and 0.0153, respectively. As such,
it appears that variation in the simulated AUC increases as it tends
downward from 1 and may approach a non-negligible amount of
variation for relatively small AUC. Thus the aggregation of AUC
across the simulation configurations we performed could possibly
be enhanced by a variation-based weights in future studies.

3.2. A clinical case study of kMEn: interpreting individualized drug
response of HIV-infected patients

3.2.1. Personal pathway responses detected by N-of-1-pathways kMEn
confirmed in a cohort-expectation standard (Fig 4)

As a proof-of-concept, we applied kMEn to real patient data in
order to assess the relevance of kMEn-discovered pathways (GO-
BP) associated with the antiretroviral treatment in HIV patients.
After calculating significant GO-BP terms associated with drug
response according to kMEn in each patient and DEG + Enrichment
across the cohort (‘cohort-expectation standard’) (Methods Sec-
tion 2.4.1), we compared pathways identified by both kMEn and
the cohort-expectation standard (Fig. 4). We use the term cohort-
expectation standard for two reasons: (i) creating a biological gold
standard for thousands of pathways is biologically unfeasible
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(Methods Section 2.4.1) and (ii) a real gold standard for a single
subject would require a gold standard specific to each subject,
which is feasible at high cost and rate limiting, as it would require
patient genotype-specific biological replicates to use cohort statis-
tics (unheard of in GEO). These are illustrated using a ‘‘Similarity
Venn Diagram”, a visualization method we previously developed
[1]. As in traditional Venn diagrams, the Similarity Venn Dia-
gram has two solid circles to represent the responsive GO-BP sets
identified by each of the two methods with the overlapping area
presenting the exact GO-BP matches contained in the two sets.
The Similarity Venn Diagram also presents two counts describing
the GO-BPs within one set that are similar (ITSP 0.7) but not iden-
tical to those of the other set in the two regions adjacent to the
middle region (area within the dotted lines). Numbers in the out-
most regions represent the number of GO-BPs, which are not
shared or similar (ITS < 0.7) to any GO-BPs in the opposing set.

As illustrated, kMEn found 43 responsive pathways that are
functionally similar to the cohort-expectation standard in every
one of the 12 NNRTI patients. This result supports the notion that
pathways detected as significant by kMEn in single subjects and
also consistently found in all subjects may have minimal ‘false pos-
itives’ or as in this case study, none. Moreover, kMEn demonstrates
remarkable sensitivity recovering over 80% of the cohort-
expectation standard pathways among the 271 pathways com-
monly responsive in at least five patients. In a less conservative
analysis with 805 pathways considered as responsive in at least
one patient, over 98% of responsive pathways identified by conven-
tional methods were also identified by kMEn. Only 63% of the
responsive pathways found by kMEn in a single patient could be
recovered by conventional cohort-based methods.

We found similar patterns when comparing our results with
kMEn to the pathways recorded from this data by Massanella
[16]. Several of the pathways they highlighted were too broad to
compare directly (>500 gene annotations, e.g. ‘‘cellular process”),
as we decided ab initio to filter out such pathways from our predic-
tions (Methods Section 2.1). kMEn was able to recover exact or
highly similar (ITSP 0.7) matches in at least 30% of patients for
all of their cohort-level findings that did fit our parameters, addi-
tional closely related biological processes (ITSP 0.7), along with
GO-BP terms that may describe more individual responses
(observed in <30% of patients) (Suppl. Fig. S3).

This observed low sensitivity of the conventional method to
identify responsive pathways in a few patients may indicate a lack
of statistical power due to small sample size. Further, these meth-
ods are not designed to identify the responsive pathways specific
to each patient, though these individual differences may explain
diverse response to therapy due to personal genetic and epigenetic
architecture. Altogether the results show that kMEn captures path-
ways found by conventional methods while discovering additional
patient-specific information.

3.2.2. kMEn enables discovery of treatment response mechanisms at
the single-subject level

We hypothesized that treatment-specific pathways (GO-BPs)
identified by kMEn would inform on patient response to HIV ther-
apy and reduce the number of features (gene sets) to investigate.
We focused on pathways that responded differently between
NNRTI and PI therapies (Methods Section 2.4.2) as they target dis-
tinct HIV enzymes (reverse transcriptase vs. protease), have known
different side effects, and likely impact differently on the host biol-
ogy. We compared the pathway scores between 12 NNRTI-treated
and 8 PI-treated patients, from which we identified the 53 GO-BP
referred to as treatment-specific mechanisms.

To determine the clinical relevance of these treatment-specific
mechanisms, the abundance of CD4+ cells were examined within
patients. As T helper cells expressing the glycoprotein CD4 are
known to be a target of HIV infection, they have been used previ-
ously as a reliable biomarker to monitor and assess response to
anti-HIV therapeutics [34]. For each subject, we calculated the fold
change of CD4+ T cell recovery before and after treatment (Meth-
ods; Eq. (4)) and conducted a principal component analysis of
GO-BP scores (Methods Section 2.4.2). kMEn-generated pathway
scores, projected on the first principal component, correlated well
with CD4+ T cells FC in HIV-infected patients (p = 0.021, Fig. 5;
Suppl. Fig. S4). This correlation is evident when considering both
treatments together (n = 20, Suppl. Fig. S4) and NNRTI therapy
alone (n = 12, Fig. 5). In contrast, the Wilcoxon and MD pathway
scores projected to the first principal component only correlated
with CD4+ T cell response to both treatments and not to NNRTI
alone (Methods Section 2.4.2; Suppl. Fig. S5). Notably, the pro-
jected values of all transcripts or the 106 DEGs identified by cohort
statistics did not correlate with CD4+ T cell count FC (Methods Sec-
tion 2.4.2; Suppl. Fig. S5). The clinical case study results are consis-
tent with those of the simulation studies: kMEn pathway scores
provided more comprehensive prediction and assessment of
antiretroviral therapy response compared to our previous N-of-1-
pathways and conventional cohort-based transcript analysis meth-
ods. In addition, among the 53 treatment-specific pathways, we
observed that five GO-BPs (Suppl. Table S1) correlated with CD4+

FC among NNRTI-treated subjects (nominal p < 0.05, Methods
Section 2.4.2).

Finally, we investigated how the responsive transcripts (before
and after treatment in each patient) contribute to the observed
correlation between the GO-BP mechanism scores and the CD4+

FC found in patients treated with NNRTI. The result showed that
kMEn successfully detects responsive pathways with bidirectional
transcript signals (Suppl. Fig. S6). Additionally, looking into the
GO-BP ‘‘mRNA catabolic process”, we identified 22 transcripts
whose expression fold changes are all lower/higher in one diamet-
ric extreme group than the opposing group, based on the individ-
ual CD4+ T-cell recovery. These transcripts include AUH, EXOSC5,
CNOT4, PPP2R2A, RPS16, RPL13A, RPL37, EIF4B, RPL7, RPS23, etc. Indi-
vidually, none of these transcripts could be correlated with the
CD4+ FC. One interpretation is that the summative effect of tran-
scripts on a biological process is consistent within groups and dis-
tinct between groups while their individual genetic and epigenetic
architecture is distinct. It has also been shown repeatedly that very
few single gene-level biomarkers are reproducibly predictive of
therapeutic response [2]. kMEn provides the opportunity of discov-
ering compound biomarkers representative of the response for pre-
dicting disease progression.

3.3. Limitations and future studies

Together, we have shown that under certain conditions, kMEn
outperforms Wilcoxon and MD N-of-1-pathways methods. One
caveat should be mentioned regarding the simulation study: Genes
are often linked within regulatory networks and may be encoded
within the same genomic locus, which may lead to gene co-
expression. However, in the simulation study, for simplicity, we
simulated pathways in which gene expression values are indepen-
dent from each other. This situation was not evaluated by the cur-
rent simulation and will be addressed in future studies. We note
that as a competitive gene set model, kMEn compares pathway-
level transcriptional response to that of the background, i.e., tran-
scripts not in the pathway [14,32]. This approach affords kMEn
greater accuracy by utilizing comprehensive information and
ostensibly provides resistance to unsuccessful cross-sample nor-
malization or other technical variation (e.g., cDNA amplification
biases) and warrants future study. Since Wilcoxon and MD are



40 Q. Li et al. / Journal of Biomedical Informatics 66 (2017) 32–41
self-contained [14,32] (i.e., only require the expression values of
the pathway), they may have a broader and more affordable
application to clinical practice. This would allow for small-scale
testing of gene sets at the single-patient level, perhaps to validate
responsive pathways using real-time quantitative polymerase
chain reaction or other targeted RNA-sequencing. An issue to con-
sider that may affect the accuracy of kMEn is the dependence on
correct k-Means clustering. At low transcript expression of the
same transcript in both samples, high fold changes of transcript
expression can be introduced by noise and experimental variation,
which could mistakenly be identified as responsive by kMEn;
although making inferences on gene sets may mitigate this prob-
lem as shown in Suppl. Fig. S7. To advance the framework of gene
clustering followed by enrichment test, other clustering techniques
may also be explored to improve the accuracy of DEG calling. The
cohort-expectation standard is derived from cohort-based statis-
tics; the development of new biological and computational stan-
dards is required for studying altered genomics in single subjects
and has been partially addressed in this study. Notably, kMEn is
not restricted to transcriptomics data; it is applicable to other
‘omics scales alone or integrated in multi-omics measures, as long
as the data can be clustered into unaltered and aberrant groups.
Lastly, CD4+ FC is a good predictor of therapeutic response in HIV
and provided a reliable phenotype to demonstrate the proof-of-
concept in our study.
4. Conclusion

The simulations and clinical case study show that N-of-1-path-
ways kMEn method provides personal transcriptome profiles via
the assignment of responsive pathways more accurately than pre-
vious single-subject methods, under bidirectional transcript
responses and robust to background noise. In the case study,
kMEn-scored gene sets enable the assessment of antiretroviral
therapy response and correlation with cellular count profile of
CD4+ T cells. While T cell counts are an affordable and convenient
measure of therapeutic response, these pathway-level and
transcript-level correlations suggest the method could scale for
predicting therapeutic outcomes from the peripheral blood in
other immune-mediated diseases (e.g. asthma). This methodology
innovates in that it identifies bidirectionally responsive transcripts
within a pathway using dynamic changes derived from ‘omics
measures with resolution at a single-subject pair of samples. Fur-
ther, we provide a framework for single-subject studies of response
to therapy, a challenging phenotype to predict [35]. Broadly, N-of-
1-pathways kMEn enables clinical interpretation of personal tran-
scriptome dynamics, which has a direct application to precision
therapeutics.
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